The minimal Kirchhoff index of graphs with a given number of cut vertices
نویسندگان
چکیده
منابع مشابه
graphs with fixed number of pendent vertices and minimal first zagreb index
the first zagreb index $m_1$ of a graph $g$ is equal to the sum of squaresof degrees of the vertices of $g$. goubko proved that for trees with $n_1$pendent vertices, $m_1 geq 9,n_1-16$. we show how this result can beextended to hold for any connected graph with cyclomatic number $gamma geq 0$.in addition, graphs with $n$ vertices, $n_1$ pendent vertices, cyclomaticnumber $gamma$, and minimal $m...
متن کاملThe signless Laplacian spectral radius of graphs with given number of cut vertices
In this paper, we determine the graph with maximal signless Laplacian spectral radius among all connected graphs with fixed order and given number of cut vertices.
متن کاملMORE GRAPHS WHOSE ENERGY EXCEEDS THE NUMBER OF VERTICES
The energy E(G) of a graph G is equal to the sum of the absolute values of the eigenvalues of G. Several classes of graphs are known that satisfy the condition E(G) > n , where n is the number of vertices. We now show that the same property holds for (i) biregular graphs of degree a b , with q quadrangles, if q<= abn/4 and 5<=a < b = 0 (iii) triregular graphs of degree 1, a, b that are quadran...
متن کاملEla on the Estrada Index of Graphs with given Number of Cut Edges
Let G be a simple graph with eigenvalues λ1, λ2, . . . , λn. The Estrada index of G is defined as EE(G) = ∑ n i=1 ei . In this paper, the unique graph with maximum Estrada index is determined among connected graphs with given numbers of vertices and cut edges.
متن کاملOn the Estrada index of graphs with given number of cut edges
Let G be a simple graph with eigenvalues λ1, λ2, . . . , λn. The Estrada index of G is defined as EE(G) = ∑ n i=1 ei . In this paper, the unique graph with maximum Estrada index is determined among connected graphs with given numbers of vertices and cut edges.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Filomat
سال: 2016
ISSN: 0354-5180,2406-0933
DOI: 10.2298/fil1613451x